mistralai/ministral-14b-2512The largest model in the Ministral 3 family, Ministral 3 14B offers frontier capabilities and performance comparable to its larger Mistral Small 3.2 24B counterpart. A powerful and efficient language model with vision capabilities.
This model is the instruct post-trained version in FP8, fine-tuned for instruction tasks, making it ideal for chat and instruction based use cases.
The Ministral 3 family is designed for edge deployment, capable of running on a wide range of hardware. Ministral 3 14B can even be deployed locally, capable of fitting in 24GB of VRAM in FP8, and less if further quantized.
Learn more in our blog post and paper.
We recommend deploying with the following best practices:
| Model Name | Type | Precision | Link |
|--------------------------------|--------------------|-----------|------------------------------------------------------------------------------------------|
| Ministral 3 3B Base 2512 | Base pre-trained | BF16 | Hugging Face |
| Ministral 3 3B Instruct 2512 | Instruct post-trained | FP8 | Hugging Face |
| Ministral 3 3B Reasoning 2512 | Reasoning capable | BF16 | Hugging Face |
| Ministral 3 8B Base 2512 | Base pre-trained | BF16 | Hugging Face |
| Ministral 3 8B Instruct 2512 | Instruct post-trained | FP8 | Hugging Face |
| Ministral 3 8B Reasoning 2512 | Reasoning capable | BF16 | Hugging Face |
| Ministral 3 14B Base 2512 | Base pre-trained | BF16 | Hugging Face |
| Ministral 3 14B Instruct 2512 | Instruct post-trained | FP8 | Hugging Face |
| Ministral 3 14B Reasoning 2512 | Reasoning capable | BF16 | Hugging Face |
Other formats available here.
We compare Ministral 3 to similar sized models.
| Model | AIME25 | AIME24 | GPQA Diamond | LiveCodeBench |
|---------------------------|-------------|-------------|--------------|---------------|
| Ministral 3 14B | 0.850| 0.898| 0.712 | 0.646 |
| Qwen3-14B (Thinking) | 0.737 | 0.837 | 0.663 | 0.593 |
| | | | | |
| Ministral 3 8B | 0.787 | 0.860| 0.668 | 0.616 |
| Qwen3-VL-8B-Thinking | 0.798| 0.860| 0.671 | 0.580 |
| | | | | |
| Ministral 3 3B | 0.721| 0.775| 0.534 | 0.548 |
| Qwen3-VL-4B-Thinking | 0.697 | 0.729 | 0.601 | 0.513 |
| Model | Arena Hard | WildBench | MATH Maj@1 | MM MTBench |
|---------------------------|-------------|------------|-------------|------------------|
| Ministral 3 14B | 0.551| 68.5| 0.904| 8.49 |
| Qwen3 14B (Non-Thinking) | 0.427 | 65.1 | 0.870 | NOT MULTIMODAL |
| Gemma3-12B-Instruct | 0.436 | 63.2 | 0.854 | 6.70 |
| | | | | |
| Ministral 3 8B | 0.509 | 66.8| 0.876 | 8.08 |
| Qwen3-VL-8B-Instruct | 0.528| 66.3 | 0.946| 8.00 |
| | | | | |
| Ministral 3 3B | 0.305 | 56.8| 0.830 | 7.83 |
| Qwen3-VL-4B-Instruct | 0.438| 56.8| 0.900| 8.01 |
| Qwen3-VL-2B-Instruct | 0.163 | 42.2 | 0.786 | 6.36 |
| Gemma3-4B-Instruct | 0.318 | 49.1 | 0.759 | 5.23 |
| Model | Multilingual MMLU | MATH CoT 2-Shot | AGIEval 5-shot | MMLU Redux 5-shot | MMLU 5-shot | TriviaQA 5-shot |
|---------------------|-------------------|-----------------|----------------|-------------------|-------------|-----------------|
| Ministral 3 14B | 0.742 | 0.676 | 0.648 | 0.820 | 0.794 | 0.749 |
| Qwen3 14B Base | 0.754 | 0.620 | 0.661 | 0.837 | 0.804| 0.703 |
| Gemma 3 12B Base | 0.690 | 0.487 | 0.587 | 0.766 | 0.745 | 0.788 |
| | | | | | | |
| Ministral 3 8B | 0.706 | 0.626 | 0.591 | 0.793 | 0.761| 0.681 |
| Qwen 3 8B Base | 0.700 | 0.576 | 0.596 | 0.794 | 0.760 | 0.639 |
| | | | | | | |
| Ministral 3 3B | 0.652 | 0.601 | 0.511 | 0.735 | 0.707 | 0.592 |
| Qwen 3 4B Base | 0.677 | 0.405 | 0.570 | 0.759 | 0.713| 0.530 |
| Gemma 3 4B Base | 0.516 | 0.294 | 0.430 | 0.626 | 0.589 | 0.640 |
The model can be used with the following frameworks;
vllm: See heretransformers: See hereWe recommend using this model with vLLM.
Make sure to install vllm >= 0.12.0:
pip install vllm --upgrade
Doing so should automatically install mistral_common >= 1.8.6.
To check:
python -c "import mistral_common; print(mistral_common.__version__)"
You can also make use of a ready-to-go docker image or on the docker hub.
Due to their size and the FP8 format of their weights Ministral-3-3B-Instruct-2512, Ministral-3-8B-Instruct-2512 and Ministral-3-14B-Instruct-2512 can run on a single 1xH200 GPU.
A simple launch command is:
vllm serve mistralai/Ministral-3-14B-Instruct-2512 \
--tokenizer_mode mistral --config_format mistral --load_format mistral \
--enable-auto-tool-choice --tool-call-parser mistral
Key parameter notes:
Additional flags:
--max-model-len to preserve memory. By default it is set to 262144 which is quite large but not necessary for most scenarios.--max-num-batched-tokens to balance throughput and latency, higher means higher throughput but higher latency.Here we assume that the model mistralai/Ministral-3-14B-Instruct-2512 is served and you can ping it to the domain localhost with the port 8000 which is the default for vLLM.
Let's see if the Ministral 3 knows when to pick a fight !
from datetime import datetime, timedelta
from openai import OpenAI
from huggingface_hub import hf_hub_download
Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
TEMP = 0.15
MAX_TOK = 262144
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
def load_system_prompt(repo_id: str, filename: str) -> str:
file_path = hf_hub_download(repo_id=repo_id, filename=filename)
with open(file_path, "r") as file:
system_prompt = file.read()
today = datetime.today().strftime("%Y-%m-%d")
yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y-%m-%d")
model_name = repo_id.split("/")[-1]
return system_prompt.format(name=model_name, today=today, yesterday=yesterday)
SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt")
image_url = "https://static.wikia.nocookie.net/essentialsdocs/images/7/70/Battle.png/revision/latest?cb=20220523172438"
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{
"role": "user",
"content": [
{
"type": "text",
"text": "What action do you think I should take in this situation? List all the possible actions and explain why you think they are good or bad.",
},
{"type": "image_url", "image_url": {"url": image_url}},
],
},
]
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=TEMP,
max_tokens=MAX_TOK,
)
print(response.choices[0].message.content)
Let's solve some equations thanks to our simple Python calculator tool.
import json
from openai import OpenAI
from huggingface_hub import hf_hub_download
Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
TEMP = 0.15
MAX_TOK = 262144
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
def load_system_prompt(repo_id: str, filename: str) -> str:
file_path = hf_hub_download(repo_id=repo_id, filename=filename)
with open(file_path, "r") as file:
system_prompt = file.read()
return system_prompt
SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt")
image_url = "https://math-coaching.com/img/fiche/46/expressions-mathematiques.jpg"
def my_calculator(expression: str) -> str:
return str(eval(expression))
tools = [
{
"type": "function",
"function": {
"name": "my_calculator",
"description": "A calculator that can evaluate a mathematical expression.",
"parameters": {
"type": "object",
"properties": {
"expression": {
"type": "string",
"description": "The mathematical expression to evaluate.",
},
},
"required": ["expression"],
},
},
},
{
"type": "function",
"function": {
"name": "rewrite",
"description": "Rewrite a given text for improved clarity",
"parameters": {
"type": "object",
"properties": {
"text": {
"type": "string",
"description": "The input text to rewrite",
}
},
},
},
},
]
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{
"role": "user",
"content": [
{
"type": "text",
"text": "Thanks to your calculator, compute the results for the equations that involve numbers displayed in the image.",
},
{
"type": "image_url",
"image_url": {
"url": image_url,
},
},
],
},
]
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=TEMP,
max_tokens=MAX_TOK,
tools=tools,
tool_choice="auto",
)
tool_calls = response.choices[0].message.tool_calls
results = []
for tool_call in tool_calls:
function_name = tool_call.function.name
function_args = tool_call.function.arguments
if function_name == "my_calculator":
result = my_calculator(**json.loads(function_args))
results.append(result)
messages.append({"role": "assistant", "tool_calls": tool_calls})
for tool_call, result in zip(tool_calls, results):
messages.append(
{
"role": "tool",
"tool_call_id": tool_call.id,
"name": tool_call.function.name,
"content": result,
}
)
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=TEMP,
max_tokens=MAX_TOK,
)
print(response.choices[0].message.content)
Ministral 3 can follow your instructions to the letter.
from openai import OpenAI
from huggingface_hub import hf_hub_download
Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
TEMP = 0.15
MAX_TOK = 262144
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
def load_system_prompt(repo_id: str, filename: str) -> str:
file_path = hf_hub_download(repo_id=repo_id, filename=filename)
with open(file_path, "r") as file:
system_prompt = file.read()
return system_prompt
SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt")
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{
"role": "user",
"content": "Write me a sentence where every word starts with the next letter in the alphabet - start with 'a' and end with 'z'.",
},
]
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=TEMP,
max_tokens=MAX_TOK,
)
assistant_message = response.choices[0].message.content
print(assistant_message)
You can also use Ministral 3 14B Instruct 2512 with Transformers !
Transformers recently added support for FP8, so make sure to install from main:
uv pip install git+https://github.com/huggingface/transformers
To make the best use of our model with Transformers make sure to have installed mistral-common >= 1.8.6 to use our tokenizer.
pip install mistral-common --upgrade
Try it out by running the following snippet.
[!Tip]
On latest main as of 05/12/2025, by default
a FP8 triton kernel for fast accelerated matmuls
(w8a8_block_fp8_matmul_triton) will be used
without any degradation in accuracy. However, if you want to
run your model in BF16 see (here)
import torch
from transformers import Mistral3ForConditionalGeneration, MistralCommonBackend
model_id = "mistralai/Ministral-3-14B-Instruct-2512"
tokenizer = MistralCommonBackend.from_pretrained(model_id)
model = Mistral3ForConditionalGeneration.from_pretrained(model_id, device_map="auto")
image_url = "https://static.wikia.nocookie.net/essentialsdocs/images/7/70/Battle.png/revision/latest?cb=20220523172438"
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": "What action do you think I should take in this situation? List all the possible actions and explain why you think they are good or bad.",
},
{"type": "image_url", "image_url": {"url": image_url}},
],
},
]
tokenized = tokenizer.apply_chat_template(messages, return_tensors="pt", return_dict=True)
tokenized["input_ids"] = tokenized["input_ids"].to(device="cuda")
tokenized["pixel_values"] = tokenized["pixel_values"].to(dtype=torch.bfloat16, device="cuda")
image_sizes = [tokenized["pixel_values"].shape[-2:]]
output = model.generate(
**tokenized,
image_sizes=image_sizes,
max_new_tokens=512,
)[0]
decoded_output = tokenizer.decode(output[len(tokenized["input_ids"][0]):])
print(decoded_output)
Transformers allows you to automatically convert the checkpoint to Bfloat16. To do so, simply load the model as follows:
from transformers import Mistral3ForConditionalGeneration, FineGrainedFP8Config
model_id = "mistralai/Ministral-3-14B-Instruct-2512"
model = Mistral3ForConditionalGeneration.from_pretrained(
model_id,
device_map="auto",
quantization_config=FineGrainedFP8Config(dequantize=True)
)
This model is licensed under the Apache 2.0 License.
You must not use this model in a manner that infringes, misappropriates, or otherwise violates any third party’s rights, including intellectual property rights.| Mode | chat |
| Context Window | 262K tokens |
| Max Output | 262K tokens |
| Function Calling | Supported |
| Vision | Supported |
| Reasoning | - |
| Web Search | - |
| Url Context | - |
| Architecture | Mistral3ForConditionalGeneration |
| Model Type | mistral3 |
| Base Model | mistralai/Ministral-3-14B-Base-2512 |
| Languages | en, fr, es, de, it, pt, nl, zh, ja, ko, ar |
| Library | vllm |
from openai import OpenAI
client = OpenAI(
base_url="https://api.haimaker.ai/v1",
api_key="YOUR_API_KEY",
)
response = client.chat.completions.create(
model="mistralai/ministral-14b-2512",
messages=[
{"role": "user", "content": "Hello, how are you?"}
],
)
print(response.choices[0].message.content)OpenAI-compatible endpoint. Start building in minutes.